2.317 Médicos Registrados en 110 Especialidades - Somos el Directorio No.1 de la Ciudad


banner

 

 

 

CIRUJANOS ONCOLOGOS EN QUITO

 

oncologos  oncologos

cirugia  cirugia

cirugia  cirugia

cirugia  cirugia

 

 

 

 

 

CIRUGIA ONCOLOGICA
TELEFONO
DIRECCION
Arias G. Williams
2455405 - 2463361
Centro Médico Metropolitano
Hidalgo Rojas Ramiro
2467871
Centro Médico Axxis Piso 3
López Ayala Carlos
2904616
Veintimilia E3 - 84 y Avenida 9 de Octubre Clínica Pichincha
Montalvo Mario
3826413 / 414
Hospital metropoitano Torre II Piso 3 Consultorio 301
Oleas Chávez Raúl
3220036
Hospital Metropolitano Torre II
Pacheco Ojeda Luis
2550904
Centro  Medico Oncológico Edf América 1er piso  Av América  712 y Asunción
Pinto Diego
03 - 2417086
Hospital Santa Inés de Ambato Piso 1 Consultorio 110 - Ambato
Ramiro Páez Carlos
2520706
Edificio Da Vinci Pasaje Los Angeles
Romero Pinos Marco
2527346
Instituto de Radiología Piso 2 Av. Eloy Alfaro y Alemania
Rueda Mesías Miguel
2261699
Calle B N31 -138 y Av. Mariana de Jesús
Sánchez Avila Carmén
2525033
Edificio New Dental Care Alemania e Italia
Sandoval Bernardo
2260588
Av.Mariana de Jesús frente al Hospital Metropolitano
Torres Freire Humberto
2902324
Edf. San Francisco Piso 4 Cordero E9 - 39
Vásconez García Alex
2905526
Alemania N29 - 60 y Mariano Acosta Edf. Medical
Yánez Villena Napoleón
2529160
Centro Médico Alemania - Alemania 237 y Av. Eloy Alfaro
Yerovi Mauro
5118671
9 de Octubre N22 - 141 entre Ramírez Dávalos y Veintimilla

 

 

 

 

La oncología es la especialidad médica que estudia y trata las neoplasias; tumores benignos y malignos, pero con especial atención a los tumores malignos o cáncer. El término oncología deriva del griego onkos (masa o tumor) y el sufijo -logos-ou (estudio de). Los médicos que se dedican a esta especialidad reciben el nombre de oncólogos.

 

Concepto

 

La oncología se ocupa de:
El diagnóstico del cáncer.
Tratamiento del cáncer (cirugía y terapias no quirúrgicas, como la quimioterapia, radioterapia y otras modalidades).
Seguimiento de los pacientes de cáncer tras el tratamiento, incluyendo los cuidados paliativos de pacientes con enfermedades en estado avanzado. Solicitud de estudios genéticos, especialmente en aquellos casos en los que el cáncer es de tipo hereditario o familiar.

 

Subespecialidades

Los oncólogos que atienden a pacientes se conocen como oncólogos clínicos, para distinguirlos de aquellos que realizan investigación relacionada con el cáncer, pero sin contacto directo con el paciente. Los cirujanos oncológicos, son aquellos cirujanos especializados en la resección de tumores, esta especialidad no está reconocida en muchos países, entre ellos España.

 

Hay países, como el Reino Unido, en los cuales los oncólogos clínicos están cualificados para recomendar tanto la quimioterapia como la radioterapia, aunque en otros países existe subespecialidades en función del tipo de tratamiento que se utiliza, por ello se distinguen 2 tipos de oncólogos:
Oncólogos médicos, son quienes utilizan los fármacos antineoplásicos, es decir, la quimioterapia y la inmunoterapia.
Oncólogos radioterápicos, especialistas que utilizan tratamientos con radiaciones, también conocidos como radioterapia.

También podemos deividir la oncología en subespecialidades, dependiendo del tipo de pacientes que atienden:
Ginecólogos oncológicos especializados en los tipos de cáncer propios de la mujer.
Oncólogos pediátricos, especializados en el cuidado de niños con algún tipo de cáncer.
Ortopedistas oncólogos. Se dedican exclusivamente al estudio, diagnóstico y tratamiento de los pacientes portadores de tumores óseos y de partes blandas mediante resección tumoral y a la reconstrucción quirúrgica empleando prótesis o trasplantes óseos.
Hematólogos oncólogos: Estudio los procesos oncologicos (cáncer) que se originan en los órganos encargados de formar la sangre. Esta rama se considera generalmente como una especialidad de la hematología.

 

Etiología del cáncer


Aunque gran parte de los factores que favorecen la aparición de tumores malignos o cáncer no se conocen con exactitud, se dispone información sobre determinados factores de riesgo, entre ellos los siguientes:
Genéticos: Mutaciones en el ADN.
Carcinógenos biológicos: algunas infecciones causadas por virus, bacterias o parásitos.
Carcinógenos químicos:los componentes del humo de tabaco, las aflatoxinas,
Carcinógenos físicos: radiaciones (ultravioleta, ionizantes)

Aproximadamente un 80% de los pacientes poseedores de cáncer requieren algún tipo de intervención quirúrgica mayor o menor, durante el periodo que dure su enfermedad, en técnicas de diagnóstico, tratamiento, paliativas  o rehabilitación.

Se estableció como especialidad a mediados del siglo pasado y contribuyó de manera notable a los resultados del tratamiento del cáncer. A pesar de que existen cirujanos especializados en temas de oncología, muchas especialidades desarrollan dentro de su trabajo rutinario el tratamiento del cáncer.

La mayoría de los tumores malignos requiere del trabajo multidisciplinario  que involucra especialistas en radioterapia, quimioterapia, cirugía, radiología, anatomía patológica, traumatología, ginecología y urología, rehabilitación, entre otros. Todos ellos forman el Comité Oncológico, que se reúne semanalmente para discutir, analizar y emitir recomendaciones en los diferentes casos clínicos. De esa manera se logra definir el mejor tratamiento para cada enfermo en particular, basado en guías clínicas estandarizadas.

 

Melanoma

 

Melanoma es el nombre genérico de los tumores melánicos o pigmentados (mélas (μελας gr.) "negro" + -o-ma 1 (-ομα gr.) "tumor") y el melanoma maligno es una grave variedad de cáncer de piel, causante de la mayoría de las muertes relacionadas con el cáncer de piel. Se trata de un tumor generalmente cutáneo, pero también del intestino y el ojo (melanoma uveal) y altamente invasivo por su capacidad de generar metástasis. Actualmente el único tratamiento efectivo es la resección quirúrgica del tumor primario antes de que logre un grosor mayor de 1 mm.

 

Epidemiología

 

Cerca de 160.000 casos nuevos de melanoma se diagnostican cada año mundialmente, y resulta más frecuente en hombres y personas de raza blanca3 que habitan regiones con climas soleados. Según un informe de la Organización Mundial de la Salud, ocurren cerca de 48.000 muertes relacionados con el melanoma cada año. Se estima que el melanoma maligno produce un 75% de las muertes asociadas al cáncer de piel.

 

Etiología

 

Por lo general, el riesgo de un individuo de contraer un melanoma depende de dos tipos de factores: intrínsecos y ambientales. Los factores intrínsecos incluyen la historia familiar y el genotipo heredado; mientras que el factor ambiental o extrínseco más relevante es la exposición a la luz solar.

Los estudios epidemiológicos sugieren que la exposición a la radiación proveniente de la luz ultravioleta (UVA8 y UVB) es una de las causas principales en la aparición del melanoma.

El melanoma es más frecuente en la espalda de los hombres y en las piernas de las mujeres. El riesgo parece estar fuertemente influido por las condiciones socio-económicas de la persona, no tanto por el hecho de que su ocupación se desarrolle en el interior o en el exterior de un edificio. De modo que es más común ver melanomas en profesionales y personal administrativo que en trabajadores o graduados. El uso de camas de bronceado con rayos ultravioleta penetrantes se ha asociado con la aparición de cáncer de piel, incluyendo el melanoma.

 

Patogenia

 

La radiación causa daño en el ADN de las células, típicamente una dimerización de la timina que, al no ser reparado por la maquinaria intracelular, crea mutación en los genes celulares. La secuenciación masiva del genóma de muestras de melanomas metastásicos de pacientes ha permitido detectar distintas mutaciones, no solo mutaciones puntuales (transiciones C->T principalmente) sino también reordenamientos cromosómicos (deleciones, amplificaciones, translocaciones) incluyendo el fenómeno de la cromotripsis que provocan una alta inestabilidad genómica. Cuando la célula se divide, estas mutaciones se propagan a nuevas generaciones de células. Si la mutación ocurre justo sobre un protooncogén (dará lugar a un oncogén) o si se produce en genes supresores tumorales, la velocidad de la mitosis o división celular en las células con las mutaciones se vuelve descontrolada, conllevando a la formación de un tumor. La mayoría de los estudios sobre quemaduras sugieren una relación positiva o directa entre las quemaduras a edades tempranas y el consiguiente riesgo de padecer melanoma. Los pacientes que presentan un historial de alta exposición a la luz ultravioleta suelen tener un porcentaje de mutaciones en genes como NRAS12 o BRAF 13 (oncogenes) superior al que poseen los pacientes con una exposición normal o baja.

 

Tumor

 

Un tumor es cualquier alteración de los tejidos que produzca un aumento de volumen. Es un agrandamiento anormal de una parte del cuerpo que aparece, por lo tanto, hinchada o distendida. El tumor, junto con el rubor, el dolor y el calor, forman la tétrada clásica de los síntomas y signos de la inflamación.

En sentido restringido, un tumor es cualquier masa o bulto que se deba a un aumento en el número de células que lo componen.Si este crecimiento celular tiene su origen en diversas células (policlonal) hablamos de hiperplasia y si se trata de una neoformación celular que tiene su origen en una única célula (monoclonal) la llamamos neoplasia independientemente de que sean de carácter benigno o maligno en funcion de su capacidad ó no de infiltrar los tejidos que le rodean. Cuando un tumor es maligno tiene capacidad de invasión o infiltración y de producir metástasis a lugares distantes del tumor primario, siendo un cáncer metastásico.

 

Tumores o neoplasias benignos

 

Un tumor benigno es una neoplasia que no posee la malignidad de los tumores cancerosos. Esto implica que este tipo de tumor no crece en forma desproporcionada ni agresiva, no invade tejidos adyacentes, y no hace metástasis a tejidos u órganos distantes. Las células de tumores benignos permanecen juntas y a menudo son rodeadas por una membrana de contención o cápsula. Los tumores benignos no constituyen generalmente una amenaza para la vida; se pueden extirpar y, en la mayoría de los casos, no reaparecen. Para denominar estos tumores se usa como prefijo el nombre del tejido que lo origina acompañado del sufijo «-oma» (tumor).

Ejemplos de tumores benignos:
Papiloma: masa más protuberante en la piel (por ejemplo, un quiste).
Adenoma: tumor que crece en las glándulas y en torno a las mismas.
Lipoma: tumor en un tejido adiposo.
Osteoma: tumor de origen en el hueso.
Mioma: tumor del tejido muscular.
Angioma: tumor compuesto generalmente de pequeños vasos sanguíneos o linfáticos (por ejemplo, una marca de nacimiento).
Nevus: pequeño tumor cutáneo de una variedad de tejidos (por ejemplo, un lunar).
Teratoma tumor encapsulado con componentes de tejidos u órganos que recuerdan los derivados normales de las tres capas germinales.
Tumor de Warthin: hiperplasia quística especialmente de la glándula parótida.

 

Tumores malignos o cáncer

 

Los tumores malignos son cancerosos. Las células cancerosas pueden invadir y dañar tejidos y órganos cercanos al tumor. Las células cancerosas pueden separarse del tumor maligno y entrar al sistema linfático o al flujo sanguíneo, que es la manera en que el cáncer alcanza otras partes del cuerpo. El aspecto característico del cáncer es la capacidad de la célula de crecer rápidamente, de manera descontrolada e independiente del tejido donde comenzó. La propagación del cáncer a otros sitios u órganos en el cuerpo mediante el flujo sanguíneo o el sistema linfático se llama metástasis. Los tumores malignos generalmente se pueden clasificar en seis categorías:
Carcinomas. Estos cánceres se originan en el epitelio que es el recubrimiento de las células de un órgano. Los carcinomas constituyen el tipo más común de cáncer. Lugares comunes de carcinomas son la piel, la boca, el pulmón, los senos, el estómago, el colon y el útero.
Sarcomas. Los sarcomas son cánceres del tejido conectivo y de sostén (tejidos blandos) de todos los tipos. Los sarcomas se encuentran en cualquier parte del cuerpo y frecuentemente forman crecimientos secundarios en los pulmones.
Gliomas. Son cánceres del cerebro o la médula espinal producidos por neoplasias en las células gliales.
Leucemias. Son cánceres de la sangre. Afectan a la línea mielocítica (es decir, afectan a los granulocitos, monocitos y/o mastocitos); comenzando en esos mismos grupos celulares o en algún progenitor común.
Linfomas. Son cánceres que surgen en línea linfocítica (Es decir, afectando a los linfocitos) o en algún progenitor común; o que afectan a otras líneas celulares como las de las células presentadoras de antígenos (CPA), diversos tipos de Macrófagos, o algún progenitor común.
Teratoma inmaduro.

 

Teratoma

 

Un teratoma es un tipo de tumor de origen embrionario. El término teratoma procede del griego tumor.

El diagnóstico definitivo de un teratoma se basa en su estudio histológico: un teratoma es un tumor con tejido biológico o componentes de órgano que provienen de derivados normales de las tres capas germinativas. Es decir, los teratomas contienen regiones celulares con las tres líneas embrionarias germinales: endodermo (epitelio glandular) mesodermo (cartílago, hueso y músculo liso y estriado) y ectodermo (epitelio neural y epitelio escamoso estratificado).

Raramente, pueden no ser de alguna de esas tres capas la identificación. Los tejidos de un teratoma, aunque en apariencia normales en sí, pueden ser algo diferentes de los tejidos circundantes, y ser altamente incongruentes: los teratomas pueden contener pelo, diente, hueso y muy raramente órganos más complejos como glóbulo ocular, torso y mano. Usualmente, un teratoma no contiene ningún órgano, sino uno o más tejidos normalmente encontrados en órganos como cerebro, tiroides, hígado y pulmón. El teratoma tiene una forma benigna llamada teratoma maduro, y una forma cancerosa llamada teratoma inmaduro.

 

El teratoma maduro más frecuente es el "tumor ovárico de células germinales", que en general afecta a mujeres en edad de procreación (desde adolescentes hasta mujeres de cincuenta años). A menudo se denomina "quiste dermoide" debido a que su revestimiento se asemeja a la piel. Estos tumores o quistes contienen diversos tejidos benignos que podrían parecerse a las vías respiratorias, los huesos, el tejido nervioso, los dientes y otros tejidos de un adulto. Su tratamiento consiste en la extirpación quirúrgica del quiste.

Los teratomas inmaduros se presentan en niñas y mujeres jóvenes, por lo general menores de 18 años. Estos tumores cancerosos son poco frecuentes, se asemejan a tejidos embrionarios o fetales, como el tejido conectivo, las vías respiratorias y el cerebro. Cuando no se han extendido más allá del ovario y la inmadurez no es prominente (teratoma inmaduro de grado 1), se curan mediante la extirpación quirúrgica del ovario. Cuando se han extendido más allá del ovario y/o una gran parte del tumor tiene un aspecto muy inmaduro (teratomas inmaduros de grado 2 o 3), se recomienda quimioterapia, además de la extirpación quirúrgica del ovario.

 

Tumores en vegetales


La bacteria Agrobacterium tumefaciens se caracteriza por producir tumores en las plantas dicotiledóneas. En la Fitopatología estos tumores son denominados como "agallas" o "tumores del cuello", ya que crecen en la zona donde se unen la raíz y el tallo (cuello).

 

Oncogén

 

Un oncogén es un gen anormal o activado que procede de la mutación de un alelo de un gen normal llamado protooncogén.  Los oncogenes son los responsables de la transformación de una célula normal en una maligna que desarrollará un determinado tipo de cáncer. En el hombre se han identificado y secuenciado más de 60 oncogenes en los diferentes cromosomas del genoma, formando un conjunto muy heterogéneo de genes.

 

En un individuo humano sano, existen más de 30 trillones de células que viven en un condominio interdependiente, regulando de forma mutua su proliferación, para asegurar que el tamaño de los diferentes órganos está coordinado y de acuerdo a la talla del individuo. Por ello, las células sólo proliferan cuando reciben señales muy específicas que provienen de otras células vecinas. Las células cancerosas, sin embargo, violan este esquema: ignoran todas las señales que reciben del exterior, y siguen sus propios esquemas de proliferación, invadiendo no sólo los espacios adyacentes, sino también sitios alejados del lugar de origen, a través del proceso de metástasis. Desde este punto de vista, las células cancerosas pueden considerarse como células "asociales", que no siguen las pautas del conjunto del organismo e incluso amenazan su supervivencia.

 

Todas las células de un tumor proceden de una única célula (pertenecen a un mismo clon), un ancestro común que en un momento dado (puede que décadas antes de la detección del tumor) inició un programa inadecuado de proliferación. Esta transformación maligna se produce por acumulación de mutaciones en un conjunto de genes muy específico. Existen dos clases de genes, que en conjunto representan una proporción muy pequeña del conjunto del genoma, que juegan un papel fundamental en el inicio de la progresión tumoral. En condiciones normales, estos genes participan en la regulación del ciclo vital de la célula: el conjunto de sucesos que definen cuándo una célula debe crecer y proliferar. Los genes reguladores pueden realizar dos tipos de funciones:
activar los procesos dirigidos hacia el crecimiento y la proliferación -- estos genes se denominan protooncogenes; contribuyen a la progresión tumoral cuando sufren mutaciones que los activan de forma permanente o constitutiva, es decir, cuando se produce una ganancia de función; este tipo de mutación tiene un efecto dominante: basta que uno de los dos alelos de la célula esté mutado para que aparezca la actividad;
inhibir dichos procesos -- son los denominados genes supresores de tumores; en este caso, intervienen en el proceso tumoral si sufren mutaciones que los inactivan, es decir, si se produce una pérdida de función; este tipo de mutación tiene un efecto recesivo: para eliminar la actividad, tienen que estar mutados los dos alelos (ver también Hipótesis de Knudson).

Para que un cáncer pueda progresar y desarrollarse, deben producirse al menos media docena de mutaciones que afecten a varios genes reguladores.  Sin embargo, otros tipos de genes también pueden participar en la malignidad, facilitando la capacidad invasiva del tumor (por ejemplo, mutaciones en las proteínas del citoesqueleto que favorecen la motilidad celular).

 

Concepto de oncogén

 

Los oncogenes proceden de genes reguladores, los protooncogenes. Muchos protooncogenes participan en cascadas de señalización que reciben, integran y transmiten señales de proliferación provenientes del exterior, ejecutando programas específicos mediante la expresión de genes concretos que ponen en marcha la maquinaria celular de crecimiento y entrada en el ciclo celular. Esta señalización se transmite de una célula a otra en un tejido, y normalmente se inicia debido a la secreción de factores de crecimiento a partir de diferentes tipos celulares (por ejemplo, los fibroblastos durante la cicatrización). Estos factores de crecimiento pasan a través de los espacios intercelulares, y son reconocidos por receptores de membrana específicos para esa molécula. Los receptores de membrana son proteínas que presentan un extremo hacia el exterior celular y otro hacia el interior. Cuando un factor de crecimiento se asocia a su receptor, éste transmite una señal hacia el citoplasma, produciendo un cambio en la conformación de una o varias proteínas, que se transmite en forma de cascada, hasta activar en el núcleo la expresión de los genes adecuados para responder a la señal emitida. Cuando se producen mutaciones que desregulan algunos de estos procesos, de manera que se mantienen activados cuando deberían permanecer detenidos, el crecimiento celular deviene anárquico.

 

Los protooncogenes son por tanto genes normales responsables de la codificación de proteínas nucleares, citoplasmáticas y de membrana, que intervienen en la homeostasis celular, es decir, en el mantenimiento del equilibrio de las funciones celulares, por lo que su nivel de expresión está estrictamente regulado. Muchos protooncogenes están muy expresados durante ciertas etapas del ciclo celular y/o muy relacionadas con determinadas fases del desarrollo embrionario.

 

En todas las células del organismo existen muchos protooncogenes y cuando un grupo de ellos se altera, puede precipitarse la transformación maligna de la célula o el desarrollo de un cáncer. Los protooncogenes existen en muchas especies de organismos pluricelulares, estando bien conservados entre diferentes especies, mientras que distintos protooncogenes pueden no ser parecidos dentro de una especie en concreto.

En algunos casos, los oncogenes virales proceden de genes celulares que en algún momento fueron secuestrados por el virus, y mutaron, dando como resultado un oncogén. Por lo tanto, a los oncogenes no mutados que se encuentran en las células normales, se les llama protooncogenes, y a los mutados, oncogenes. Los oncogenes se designan con tres letras, por ejemplo src por el virus del sarcoma de Rous. A la forma viral o maligna del oncogén se le antepone una v (v-src) y a la forma benigna, normal o celular se le antepone una c (c-src). Un gran número de oncogenes identificados en retrovirus entra dentro de este grupo, por ejemplo los oncogenes abl, erb-B, fes, fms, fos/jun, kit, raf, myc, H-ras, K-ras, rel y sis, además de src.

El descubrimiento y conocimiento de los oncogenes confirma que el cáncer es una enfermedad genética con las siguientes salvedades:
El desarrollo del cáncer no es debido a la expresión de un solo oncogén. Es preciso la acumulación de varios oncogenes en una sola célula (teoría clonal) o un número determinado de oncogenes iguales en varias células para que se manifieste el cáncer.


Los oncogenes no son la única causa del cáncer. El sistema inmune también es uno de los factores reguladores al eliminar células cancerosas (que manifiestan oncogenes) o por el contrario no reconocer a las células malignas y permitir su supervivencia y proliferación. El cáncer es un conjunto de enfermedades multifactoriales, por lo cual, los oncogenes no son la única causa.

 

Clasificación de los oncogenes

 

Según el lugar de acción

Los oncogenes pueden codificar proteínas que actúan a diferentes niveles de la cascada de señalización que activa la proliferación celular:

Extracelular: exceso de producción de factores de crecimiento

En este caso, los oncogenes fuerzan a la célula a producir un exceso de factores de crecimiento; estos factores influyen no sólo sobre las células vecinas, sino que además pueden activar la proliferación de las células que los produjeron:
sarcomas y gliomas (tumores de tejidos conectivos y de células de cerebro no neuronales, respectivamente) liberan gran cantidad de PDGF;
otros tipos tumorales expresan demasiado TGF-alfa;
los oncogenes sis, int-2 y hst estimulan la proliferación celular;

Membrana: receptores modificados

Se producen versiones oncogénicas de receptores celulares para factores de crecimiento, que transmiten una señal de proliferación hacia el interior celular en ausencia de factores de crecimiento en el exterior:
las células tumorales de mama a menudo expresan receptores Erb-B2 que funcionan de este modo;
otros ejemplos son los oncogenes src o fms.

Citoplasma: cascadas de señalización constitutivas

 

Se generan versiones oncogénicas de proteínas citoplásmicas de la cascada de señalización que se mantienen activas siempre:
el caso mejor estudiado es el de la familia de proteínas Ras; los productos de la familia Ras unen GTP, se asocian a GTPasas y actúan como transductores de señales para receptores de factores de crecimiento en la superficie celular; el oncogén Ras mutado actúa constitutivamente, uniendo siempre GTP; formas de Ras hiperactivo se encuentran presentes en un cuarto de todos los tumores humanos, incluyendo carcinomas (tumores epiteliales) de colon, páncreas y pulmón;
proteínas citoplasmáticas con actividad kinasa: por ejemplo la proteína c-Raf puede ir al núcleo para ejercer la función recibida en la membrana activada, actuando como segundo mensajero; la forma oncogénica de Raf ha perdido las secuencias reguladoras del extremo amino y está constitutivamente activa;
otro tipo, c-Crk, es una proteína citoplasmática que estabiliza las tirosina kinasas;

 

Núcleo: factores de transcripción o secuencias asociadas constitutivas

Se producen versiones oncogénicas de factores de transcripción o secuencias asociadas que funcionan en todo momento:
la alteración oncogénica de los factores de transcripción los convierte en proteínas oncogénicas con pérdida de sus elementos negativos o pérdida de su dominio activo (mutación dominante negativa): es el caso de la familia de factores de transcripción myc); normalmente, las células sólo producen Myc cuando son estimuladas mediante factores de crecimiento, y una vez producidos estimulan la transcripción de genes que activan la proliferación celular; sin embargo, en muchos tipos de cáncer (sobre todo en los asociados con los tejidos hematopoyéticos), los niveles de Myc permanecen elevados aún en ausencia de factores de crecimiento;
otros oncogenes que codifican para factores de transcripción constitutivos son myb, fos, jun, erb-A y rel.
modificación de secuencias reguladoras que están próximas a genes codificantes, compuestos por segmentos cortos de ADN que sirven como diana para los factores de transcripción que activan los genes codificantes; muchas de estas secuencias reguladoras se localizan fuera de las secuencias codificadoras de proteínas, en la zona del ADN no codificante o ADN basura, que puede representar el 97% del genoma humano.

 

Aunque los genes nucleares son capaces de perpetuar la proliferación celular, no tienen capacidad de formar tumores malignos. Para adquirir la capacidad tumorogénica es preciso la activación de un segundo oncogén, generalmente citoplasmático, por lo que para que aparezca un tumor maligno es necesario la activación de varios oncogenes.

Según la función de la proteína codificada


Oncogenes que codifican proteínas G: el más común es el Ras. Este gen codifica una proteína G monomérica que, en el protooncogen, al estar desactivada, hidroliza el GTP a GDP, desactivando la proliferación celular. El oncogen, en cambio, la mantiene en su forma activada. Así, no puede hidrolizar el GTP y la proliferación celular continúa.
Oncogenes que codifican factores de crecimiento o sus receptores: el oncogen sis (virus del sarcoma de simio) codifica el factor de crecimiento PDGF, cuya producción excesiva estimula la proliferación celular. El erb-B (eritroblastosis aviar) rige la formación de un receptor para el factor de crecimiento EGF, que al estar alterado actúa como si estuviera permanentemente unido a EGF, estimulando la proliferación celular.


Oncogenes que codifican proteínas quinasas de serina-treonina y de tirosina: Raf es una quinasa de serina-treonina que actúa en el inicio de la cascada del AMP cíclico, que es la vía primaria del control de la proliferación celular. El oncogen mantiene a Raf en la forma activa, evitando que se desactive la proliferación. El gen Src es una quinasa de tirosina que produce señales intracelulares, muchas de ellas relacionadas con la proliferación celular.


Oncogenes que codifican factores de transcripción nuclear: el gen Myc causa el paso de G0 a G1 en una proliferación celular que no debería ocurrir.
Oncogenes que codifican productos que afectan a la apoptosis: el gen Bcl-2, al estar sobreexpresado, suprime la apoptosis.

Activación de los oncogenes

La activación de un protooncogén y su transformación a un oncogén se produce por mutaciones ocasionadas por causas físicas como las radicaciones ionizantes, causas químicas como los carcinógenos, causas biológicas como los virus oncogénicos o causas hereditarias, por mutaciones transmitidas a lo largo de generaciones o por fallo en alguno de los mecanismos de reparación del ADN.

Los mecanismos por los que un protooncogén puede ser transformado en un oncogén son cuantitativos y cualitativos.

Mecanismos cuantitativos
1.Inserción de un promotor viral: Algunos retrovirus contienen una secuencia promotora llamada LTR (Long Terminal Repeat, en inglés), que cuando es incorporado al ADN de la célula infectada adyacente a las secuencias reguladoras de un protooncogén, se produce un aumento en la expresión de ese gen que queda bajo el control del promotor viral LTR, produciéndose alteraciones en el crecimiento y diferenciación celular.
2.Translocación o reordenación cromosómica: Es el cambio de localización de una porción cromosómica, con los genes que lleva incorporados a otra ubicación distinta dentro del mismo cromosoma o de otro, que pueden afectar a la expresión o función bioquímica de un protooncogén. Las translocaciones ocurren frecuentemente en los tumores hematológicos como los linfomas y leucemias. Por ejemplo el protooncogén c-myc está situado en el cromosoma 8 y puede trasladarse al cromosoma 14. Esta nueva posición produce una sobreexpresión de la proteína que codifica, dando lugar al linfoma de Burkitt. También la leucemia mieloide crónica se produce por la translocación recíproca entre el cromosoma 9 y 22, produciéndose un oncogén híbrido entre el gen c-abl del cromosoma 9 y la región bcr del cromosoma 22, dando lugar al cromosoma Philadelphia.


3.Amplificación: Es el aumento del número de copias del mismo protooncogén del genoma, incluso varias miles de veces. Los cromosomas de los tumores con oncogenes amplificados poseen trastornos estructurales que se visualizan fácilmente en el cariotipo como regiones con bandas anómalas, regiones teñidas homogéneamente (Homogeneously Staining Regions, HSR en inglés) o “diminutos dobles” (double minutes, DM en inglés) que son pequeños fragmentos extracromosómicos de tamaño variable que se replican automáticamente. En varios tumores se ha detectado amplificación oncogénica y el grado de amplificación está muy relacionado en el estadio y pronóstico del tumor. La sobreexpresión por amplificación del oncogén n-myc produce el neuroblastoma, aunque también se encuentra en otros tumores. El aumento del número de copias de un oncogén además de producir un aumento de la proteína que codifica y que actúa como factor de crecimiento, también produce un mayor aumento de receptores al factor de crecimiento. Los protooncogenes amplificados en los tumores humanos pertenecen sobre todo a una de estas tres familias: erb B, ras o myc. Se desconoce todavía si la amplificación protooncogénica es causa o produce malignidad en un tumor, por ejemplo para que adquiera la capacidad de metastatizar o es un efecto de la transformación maligna de un tumor ya que ocurre en tumores grandes, poco diferenciados y que tienen metástasis, cualidades que aumentan la probabilidad de transformación maligna de la amplificación.


4.Hipometilación: Se estima que entre un 2 y un 7% de los residuos de citosina en el ADN están metilados. Cuando los grupos metilo (CH3) se localizan en secuencias de ADN promotoras de genes, la iniciación de la transcripción se encuentra mecánicamente interferida, siendo el grado de transcripción inversamente proporcional a la metilación. La disminución de grupos metilo en las bases de citosina de una secuencia promotora de un protooncogén, activa su transcripción y la posible transformación maligna a un oncogén.

Mecanismos cualitativos.


1.Mutación puntual: La sustitución de una base nitrogenada en el ADN de un gen, puede producir un cambio en el aminoácido identificado por el codón que presenta la mutación, que provoca un cambio estructural en la proteína sintetizada por ese gen, alterándose su función, por lo que la sustitución de una sola base nitrogenada en la cadena de ADN puede transformar un protooncogén en un oncogén. Por ejemplo el oncogén ras modifica un codón de lectura que convierte la glicina en valina. Oncogenes homólogos como el H-RAS, K-RAS Y N-RAS también poseen mutaciones puntuales en otras localizaciones. Los puntos donde se producen dichas mutaciones son críticos para el control del crecimiento celular normal, ya que en el caso del oncogén ras, las mutaciones impiden la conversión de la forma activa a inactiva, con la consiguiente alteración en el control de la proliferación celular.
2.Deleción del material genético: La pérdida de material genético de un cromosoma puede activar a un oncogén por medio de tres mecanismos:
1.La pérdida puede ser de una secuencia inhibitoria de un protooncogén, que provoca la sobreexpresión del producto del oncogén.
2.La pérdida puede provocar que el oncogén quede más cerca de una secuencia promotora, produciendo también una sobreexpresión.
3.La pérdida puede ser de un gen supresor tumoral, y suele ser el mecanismo probablemente más importante por el que una pérdida cromosómica puede activar un oncogén.

Proteínas codificadas por los oncogenes

Los protooncogenes codifican las proteínas necesarias que intervienen en el control de la mayor parte de los mecanismos por los que se regula la proliferación celular como:


Factores de crecimiento.
Receptores de factores de crecimiento.
Receptores hormonales.
Factores de transmisión intracelular o segundos mensajeros como:
Proteínas con actividad tirosinquinasa.
Proteínas de unión a guanosina trifosfato.
Factores de transcripción nuclear.

Historia de los oncogenes

El inicio del descubrimiento de los oncogenes fue a través de los estudios del patólogo Francis Peyton Rous que trabajaba en el Instituto Rockefeller de Nueva York en 1910. Rous transmitió el sarcoma de pollo, mediante la inyección a docenas de gallinas de un extracto de cultivo celular tumoral, que no contenía células vivas. Con este procedimiento consiguió reproducir el tumor y sospechó que el agente causal debería ser de menor tamaño que las células y que las bacterias, por lo que podría corresponder a un virus, aunque no lo llamó así, sino agente carcinógeno. Más tarde descubrió que era un virus y por sus descubrimientos le concedieron el premio Nobel de Medicina en 1966.

 

El virus del sarcoma de Rous (src) es el prototipo de los retrovirus, demostrando que la información genética no se transfiere solamente de forma unidireccional de ADN a ARN y de éste a proteínas, sino que los retrovirus mediante la enzima transcriptasa inversa, son capaces de sintetizar ADN a partir de ARN. Además de descubrir que el src era carcinogénico, se descubrió que estaba formado por cuatro genes, tres de los cuales imprescindibles para la multiplicación del virus y el cuarto gen, el v-src, que no realiza ninguna función en el virus, pero que en las células produce la transformación maligna cuando se infectan por el virus. En 1975 el trabajo de los Dres Ferrer-Roca O. y Egozcue Cuixart J. sobre la importancia de los virus ubicuos desarrollaba la teoría de la correlación cariotipo tumoral dentro de la teoría somatico-viral del cáncer en la que se estipulaba que la inserción de los virus oncogenos provocaban las anomalias cromosómicas de los tumores y luego sufrían un proceso de selección clonal. En 1989 John Michael Bishop, que también recibió el premio Nobel de Medicina en 1989, descubrió mediante técnicas de ingeniería genética que las secuencias homólogas del v-src también se encuentran en el ADN de las células normales, tanto de aves como de muchos vertebrados e incluso en el ser humano, demostrando así que el oncogén src procede de un gen normal animal, un protooncogén, por lo que la transformación cancerosa se produce en genes normales, los protooncogenes que realizan funciones muy importantes en la proliferación y diferenciación celular. El estudio de la secuencia de nucleótidos del v-src, al poseer intrones y exones, que son secuencias exclusivas de ADN animales y no virales, se dedujo que este gen no pertenece al virus, sino que debió ser arrastrado por el virus después de unirse y desprenderse del ADN de alguna célula animal infectada durante la evolución. El protooncogén c-src, de las células normales codifica una proteína llamada por Bishop pp60c-src que está muy unida a la superficie interior de la membrana celular, capaz de fosforilar las tirosinas. Se sabe que las células cancerosas que contienen el oncogén v-src activo, presentan una proteína pp60c-src anormal, a la que le falta un residuo de tirosina en un lugar concreto de su conformación y que en la versión normal de la proteína está fosforilada para bloquear la fosforilación de otras proteínas en la transmisión de señales. Por eso la pp60c-src mutada está continuamente funcionando, añadiendo grupos fosfato en estas proteínas de transmisión de señales en las células cancerosas.

 

La demostración final de que el cáncer es una enfermedad genética se remonta a principio de los años ochenta, gracias a Robert A.Weinberg, Geofrey M. Cooper, Michael Wigler y Mariano Barbacid pertenecientes a equipos de investigación diferentes. Estos cuatro científicos aislaron muestras de ADN de diferentes tumores humanos y lo añadieron a cultivos celulares de fibroblastos no tumorales de ratón. Las células fibroblásticas normales dejan de multiplicarse cuando entran en contacto unas con otras, fenómeno denominado inhibición por contacto, mientras que grupos celulares de los cultivos de fibroblastos que contenían ADN tumoral se multiplicaban sin control, perdiendo la inhibición por contacto y además formaban nódulos tumorales al inocularlos en ratones inmunodeprimidos, fenómeno que no ocurría al inyectar fibroblastos normales. Se volvieron a aislar las células fibroblásticas transformadas en tumorales, fragmentando su ADN mediante enzimas de restricción, y los fragmentos obtenidos de ADN se inyectaron de nuevo en fibroblastos normales, volviéndose unos cancerosos y otros no. El proceso de aislar a las células tumorales, fragmentar su ADN e inocularlo a células normales se repitió varias veces, hasta aislar cada vez más fragmentos de ADN humano que provoca cáncer, es decir los oncogenes.